Захватят ли нанороботы мир?

Моделируем ход техногенной катастрофы с помощью простого уравнения.

Захватят ли нанороботы мир?

Нашу планету ровным слоем покрывает большая колония бактерий, которые находятся буквально везде. Внезапно в Сколкове изобретают высокотехнологичных наноботов, которые имеют способность самовоспроизводиться при съедании этих бактерий. Каждую секунду сколковский нанобот пожирает одну бактерию и сразу делится на два таких же нанобота. Бактерии просто питаются подножным кормом и тоже каждую секунду делятся пополам, но просто так, сами по себе.

Захватят ли сколковские наноботы всю планету, если вырвутся из не очень хорошо охраняемых сколковских лабораторий и начнут размножаться в дикой природе?

Эта задача красиво решается через обычные школьные уравнения, но для этого нужно будет добавить два неизвестных.

Каждый нанобот съедает по одной бактерии и тут же делится пополам, то есть на каждом шаге количество наноботов удваивается. А раз так, то удваивается и количество съедаемых бактерий. Запишем, сколько бактерий съедает нанобот на каждой секунде:

секунда 0:  1 — потому что в самом начале у нас один нанобот

секунда 1: 2 × 1 — после первой секунды наноботов стало два, значит, они съели две бактерии, каждый по одной

секунда 2: 2 × 2 × 1 — наноботы снова удвоились и съели по бактерии

Мы видим постоянное произведение двоек, а значит, их можно представить в виде степени:

секунда 0: 1 = 2 в нулевой степени

секунда 1: 2 = 2¹

секунда 2: 4 = 2²

*  * *

T секунда: 2 в степени Т

Мы выяснили, как быстро размножаются наноботы и сколько на каждой секунде они съедят бактерий. Теперь допустим, что когда на планете появился один нанобот, этих бактерий уже было N штук. Тогда снова обозначим время в секундах как Т и попробуем выяснить, сколько бы получалось бактерий на каждой секунде с учётом наноботов:

секунда 0: N — начальные условия

секунда 1:  2 × (N − 1) —  перед удвоением наноботы съели одну бактерию

секунда 2: 2 × [ 2 × (N − 1) − 2] — удваиваем то, что было до этого, и перед этим вычитаем две съеденных бактерии

секунда 3: 2 × { 2 × [ 2 × (N − 1) − 2] − 4} — снова удваиваем предыдущее, не забывая вычитать съеденных бактерий.

Раскроем скобки и продолжим логический ряд:

секунда 0: N

секунда 1:  2 × N − 2

секунда 2: 2² × N − 8

секунда 3: 2³ × N − 24

*  * *

секунда Т: (2 в степени Т) × N − (2 в степени T) × Т

Когда наноботы съедят всех бактерий и захватят мир, наше последнее уравнение станет равно нулю. Запишем это:

(2 в степени Т) × N − (2 в степени T) × Т = 0

Перенесём одну часть уравнения вправо:

(2 в степени Т) × N = (2 в степени T) × Т

Видим, что в каждой части есть общий множитель: (2 в степени Т). Сократим его:

N = Т

Получается, что наноботам, чтобы съесть всех бактерий, понадобится столько секунд, сколько бактерий было на планете в момент старта. А раз время у нас не ограничено, то в конце концов наноботы дожуют всех бактерий и ЗАХВАТЯТ ВЕСЬ МИР!

Проверим это для колонии из четырёх бактерий:

секунда 0: 4 бактерии и 1 нанобот

секунда 1: 6 бактерий и 2 нанобота

секунда 2: 8 бактерий и 4 нанобота

секунда 3: 8 бактерий и 8 наноботов

секунда 4: 0 бактерий и 16 наноботов

Решение работает, наноботы победили!

Вам может быть интересно:

Обложка:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Маша Климентьева

Вам может быть интересно
Задача про таблетки и злого гения
Задача про таблетки и злого гения

Как логика и ограничения помогают найти банку с отравленными таблетками.

medium
Задача про начальника транспортного цеха
Задача про начальника транспортного цеха

Что быстрее — вспомнить формулы за 7 класс или написать программу для решения?

easy
Почему разработчик сегодня злой
Почему разработчик сегодня злой

Три главные проблемы в работе программиста и как с ними быть.

easy
Космическая задача из NASA
Космическая задача из NASA

На размышление даётся десять… девять… восемь…

easy
Убойная задача из американского ЕГЭ про монеты
Убойная задача из американского ЕГЭ про монеты

У них всё то же самое

easy
Простая и сложная задачи с собеседования
Простая и сложная задачи с собеседования

Но обе можно решить за 5 минут

easy
Задача про банковскую комиссию
Задача про банковскую комиссию

Основано на реальных событиях

medium
Сложная задачка на логику и математику: пассажиры в вагоне
Сложная задачка на логику и математику: пассажиры в вагоне

Задача про внутренний туризм

easy
Что не так с челленджем из Тиктока на скорость сбора бутылок: разбираем как математики
Что не так с челленджем из Тиктока на скорость сбора бутылок: разбираем как математики

Не всему нужно верить

easy
easy