Парадокс средней оценки
hard

Парадокс средней оценки

Как такое возможно: сделать всё по отдельности лучше всех, но проиграть в общем зачёте?

Два программиста обсуждают задачи, которые они закрывали из багтрекера.

— В прошлом месяце у меня было 6 задач и я успешно закрыл 5 из них, — говорит Егор.

— Ты круче: на мне висело в прошлом месяце 10 задач, а я закрыл только 8, — отвечает Вася.

— Ну да, всё правильно, 5/6 > 8/10, я красавчик, — улыбается Егор.

— А я зато в этом месяце закрыл 4 задачи из 10! — не унимается Вася.

— И что? Я всё равно работаю лучше тебя, потому что закрыл уже 6 из 14 задач на этот месяц, а 6/14 > 4/10, — снова улыбается Егор в ответ.

— Да что ж такое! За эти два месяца у каждого из нас было по 20 задач, и я сделал 12, а ты только 11! Но в каждом месяце я тебе проигрываю по процентам выполнения. Как это вообще возможно?! — злится Вася.

— Вот поэтому я уже мидл, а ты всё ещё джуниор, — отвечает Егор и уезжает в закат на своей «Феррари».

Объясните, как такое возможно: сделать больше задач за весь период, но проигрывать каждый месяц?

Всё противоречие здесь происходит от того, что Вася складывает задачи в одно целое и не учитывает разную степень нагрузки по ним.

Вместо этого Васе нужно было сложить не отдельно общие задачи каждого и количество выполненных из них, а сложить дроби, которые он сам и получил.

Если бы каждый из них выполнял норму в каждом месяце, то процент выполнения за 2 месяца был бы 200% — 100% за прошлый месяц и 100% за этот. Запомним это.

За прошлый месяц Вася выполнил норму по задачам из трекера на 8/10, а за этот — на 4/10. Теоретически он должен был сделать 20 задач, но сделал меньше. Получается, что всего за два месяца Вася выполнил норму на:

8/10 + 4/10 = 12/10 = 1,2

Умножим это на 100%, чтобы получить процент выполнения за 2 месяца у Васи: 1,2 × 100% = 120% из 200%.

Теперь посчитаем, как поработал Егор. Для этого приведём дроби к общему знаменателю перед сложением:

5/6 + 6/14 = 70/84 + 36/84 = 106/84 = 1,26 из 2.

Умножим это на 100%, чтобы получить процент выполнения за 2 месяца у Егора: 1,2 × 100% = 126% из 200%, а это больше, чем тот же показатель у Васи.

Вася складывал задачи напрямую, а Егор — пропорционально нагрузке, поэтому на самом деле парадокса тут нет. Поэтому Егор и стал мидлом — умеет правильно считать и распределять нагрузку по рабочим задачам.

Обложка:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Маша Климентьева

Получите ИТ-профессию
В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.
Вам может быть интересно
Задача про Катю и двух программистов

Немного о том, как знакомятся программисты.

hard
5 полезных функций Excel для начинающих программистов

Необязательно писать код только на языках программирования — Excel тоже подходит.

easy
Задача про соседских тараканов

Простая математика, но непростая логика. Проверьте, получится ли у вас.

easy
Программист и бизнес-план

Простая задача со сложными условиями

easy
Непростая задача про диагональ квадрата

Для решения нужно выйти за рамки

easy
Очень сложная задача про обруч

Классическая математическая задачка, которая взрывает мозг.

easy
Задача на импортозамещение

Немного логики, капля математики и много любви к российским фермерам.

medium
Странные программисты говорят про время

Суперзамороченная задача, которая решается в два счёта.

easy
Посленовогодняя задачка: Санта-Клаус снова против Деда Мороза

Кто быстрее: 9 оленей или 3 лошади?

easy
hard
[anycomment]
Exit mobile version