Карантинная задача на тригонометрию

Соблюдай дистанцию, или квадрат катета!

Карантинная задача на тригонометрию

В одном магазине сделали так: чтобы все точно соблюдали дистанцию в 1,5 метра, пол перед кассами разметили следующим образом — сделали даже немного с запасом:

Карантинная задача на тригонометрию

Когда все точки были заняты, в очередь пришёл покупатель и стал ровно в центре этого квадрата. Очередь стала ругаться, что он не соблюдает безопасную дистанцию 1,5 метра. Но покупатель молча стоял на своём месте. Вопрос: соблюдает ли он нужную дистанцию или очередь возмущается правильно?

Для начала нарисуем то, что получилось, когда новый покупатель стал в центре этого квадрата, и обозначим кружки буквами A, B, C, D и E:

Карантинная задача на тригонометрию

Теперь вспоминаем школьную геометрию. Так как по условию у нас квадрат, то AB = BD = CD = AC = 2,2 метра.

Раз новый посетитель стал ровно в центр квадрата (на место E), то получается, что AE = BE = CE = DE. С этим разобрались, переходим к треугольникам.

Возьмём треугольник ABC. Так как он образован двумя сторонами квадрата и его диагональю, то он — прямоугольный треугольник. Нас интересует гипотенуза BC, а чтобы её найти, нужно знать сумму квадратов катетов.

 

Карантинная задача на тригонометрию

Из школьного курса мы помним, что квадрат длины гипотенузы равен сумме квадратов длин катетов: BC² = AB² + AC² → BC² = 2,2² + 2,2² = 9,68. Извлекаем квадратный корень из 9,68 и находим длину BC — 3,11 метра.

Вспоминаем, что E — это самый центр квадрата, а значит, точка E лежит на диагонали квадрата, а значит, делит диагонали квадрата пополам. Но у нас диагональ квадрата — это гипотенуза треугольника ABC, а значит, диагональ равна 3,11 метра. Теперь мы легко найдём расстояние от точек B и С до середины диагонали: 3,11 / 2 = 1,555 метра.

Проделав то же самое с другой диагональю, мы убедимся, что и там всё то же самое, а значит, расстояние от центра квадрата до его углов — 1,555 метра, что больше разрешённых полутора метров.

Получается, что все в очереди плохо учились в школе и зря шикают на нового посетителя. Хотя вставать в середину очереди всё равно нехорошо.

Обложка:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Маша Климентьева

Вам может быть интересно
Задача Эйнштейна
Задача Эйнштейна

Учёный утверждал, что только 2% людей могут решить в уме эту задачу (так говорят в Википедии).

hard
Задача про полторы белки
Задача про полторы белки

Не спрашивайте, просто попробуйте решить.

easy
Задача про начальника транспортного цеха
Задача про начальника транспортного цеха

Что быстрее — вспомнить формулы за 7 класс или написать программу для решения?

easy
Геометрическая задача про программиста и плитку
Геометрическая задача про программиста и плитку

Интересная задача про площадь

easy
Непростая задача про диагональ квадрата
Непростая задача про диагональ квадрата

Для решения нужно выйти за рамки

easy
Задача про таблетки и злого гения
Задача про таблетки и злого гения

Как логика и ограничения помогают найти банку с отравленными таблетками.

medium
Сложная задача про поросёнка и NFT
Сложная задача про поросёнка и NFT

Вы не сможете решить её правильно

easy
Инженерная задачка для программистов
Инженерная задачка для программистов

Как запрограммировать датчик для вращающегося диска?

medium
Детская задача про цифры на пирамиде, которая может поставить в тупик половину взрослых
Детская задача про цифры на пирамиде, которая может поставить в тупик половину взрослых

Используем логику и холодный расчёт

easy
easy