Спор двух программистов
easy

Спор двух программистов

Задача про математику и находчивость.

Один программист пришёл к другому и, немного выпив, говорит:

— Загадай любое натуральное число X!

— Отстань

— Нет, загадай.

— Ну, загадал.

— А теперь придумай три любых целых числа от 6 до 8 включительно.

— Придумал, и что дальше?

— А теперь умножь своё начальное число X на первое из них, прибавь второе и отними третье. Сколько у тебя получилось?

— Минутку… 164.

— Ха, а я знаю, какие ты числа загадал!

— Что, все четыре числа вычислил?!

— Ага!

— НО КАК?!

Действительно, как первому программисту удалось узнать все числа, которые загадал второй?

Обозначим три загаданных числа от 6 до 8 как A, B и C. Если мы сделаем всё, как написано в задаче, то получим равенство: A × X + B − C = 164.

Из этого получим X:

X = (164 − B + C) / A

Исключаем число 7

Если A = 7, то числитель нашей дроби должен нацело делиться на 7, потому что X не может быть дробным (по условию X — натуральное число). Числа, близкие к 164, которые делятся на 7 — это 161 и 168.

Чтобы получить 161 в числителе, числа B и C должны отличаться друг от друга на 3, а это невозможно, потому что максимальная разница равна 8 − 6 = 2.

Чтобы получить 168 в числителе, числа B и C должны отличаться друг от друга на 4, а это тоже невозможно, потому что максимальная разница равна 8 − 6 = 2.

Значит, A точно не равно 7. Запомним это.

Если число A точно не 7, то оно чётное — 6 или 8. Это значит, что числитель (164 − B + C) тоже чётный, чтобы в результате деления получилось целое число. А это возможно, если числа B и C оба чётные или оба нечётные.

Если числа B и C оба нечётные, то это возможно только в случае, если они оба равны 7. В этом случае −B + C = 0, и в числителе остаётся только 164, которое нам предстоит разделить на 6 или 8. Но 164 не делится нацело ни на 6, ни на 8, значит, они тоже не равны 7.

Исключаем одинаковые B и C

Из последнего примера мы видели, что B и С не могут быть одинаковыми в принципе, неважно, чётными или нечётными, поэтому остаются только два варианта:

B = 6, C = 8 или B = 8, C = 6.

Проверяем оставшиеся варианты

Если B = 6 и C = 8, то в числителе получается так: (164 – 6 + 8) = 166. Но 166 не делится нацело ни на 6, ни на 8 (возможные значения A), значит, этот вариант можно исключить.

Получается, что остаётся только пара B = 8 и C = 6: (164 – 8 + 6) = 162. Число 162 нацело делится только на 6: 162 / 6 = 27, значит, A = 6, а второй программист загадал число 27:

X = 27

A = 6

B = 8

C = 6

Проверяем: 6 × 27 + 8 − 6 = 164. Всё сходится.

Редактура:

Максим Ильяхов

Художник:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Мария Дронова

Соцсети:

Олег Вешкурцев

Получите ИТ-профессию
В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.
Вам может быть интересно
5 интересных задач про цифры

Подборка для тех, кто любит подумать.

medium
Андрюха, бензин и Игра престолов

Программистская задача с математическим уклоном.

easy
Задача про безумного рекрутера и большой офис

Вот что бывает, когда начинаешь бесконтрольно нанимать людей, — внезапно заканчивается место в офисе.

easy
Школьная задача, которую дети решают без калькулятора, а взрослые — нет

А вы сможете?

easy
Задача про программиста и сто дверей

Обойди их все

easy
Задача про пончики, аналитиков и маркетологов

Её можно решить несколькими способами

easy
Как заставить Эксель думать за тебя

Находим оптимальное решение с любыми параметрами

medium
Сложная задача про длину кабеля

Потребуется логика и воображение

easy
Задачка: как подбросить гнутую монетку

Что делать, если вероятность выпадения не 50 на 50?

medium
easy
[anycomment]
Exit mobile version