Решение матричных уравнений
medium

Решение матричных уравнений

Финальная глава саги.

Линейная алгебра и, в частности, матрицы — это основа математики нейросетей. Когда говорят «машинное обучение», на самом деле говорят «перемножение матриц», «решение матричных уравнений» и «поиск коэффициентов в матричных уравнениях». 

Понятно, что между простой матрицей в линейной алгебре и нейросетью, которая генерирует котов, много слоёв усложнений, дополнительной логики, обучения и т. д. Но здесь мы говорим именно о фундаменте. Цель — чтобы стало понятно, из чего оно сделано. 

Краткое содержание прошлых частей: 

  • Линейная алгебра изучает векторы, матрицы и другие понятия, которые относятся к упорядоченным наборам данных. Линейной алгебре интересно, как можно трансформировать эти упорядоченные данные, складывать и умножать, всячески обсчитывать и находить в них закономерности. 
  • Вектор — это набор упорядоченных данных в одном измерении. Можно упрощённо сказать, что это последовательность чисел. 
  • Матрица — это тоже набор упорядоченных данных, только уже не в одном измерении, а в двух (или даже больше). 
  • Матрицу можно представить как упорядоченную сумку с данными. И с этой сумкой как с единым целым можно совершать какие-то действия. Например, делить, умножать, менять знаки.
  • Матрицы можно складывать и умножать на другие матрицы. Это как взять две сумки с данными и получить третью сумку, тоже с данными, только теперь какими-то новыми. 
  • Матрицы перемножаются по довольно замороченному алгоритму. Арифметика простая, а порядок перемножения довольно запутанный. 

И вот наконец мы здесь: если мы можем перемножать матрицы, то мы можем и решить матричное уравнение.

❌ Никакого практического применения следующего материала в народном хозяйстве вы не увидите. Это чистая алгебра в несколько упрощённом виде. Отсюда до практики далёкий путь, поэтому, если нужно что-то практическое, — посмотрите, как мы генерим Чехова на цепях Маркова.

Что такое матричное уравнение

Матричное уравнение — это когда мы умножаем известную матрицу на матрицу Х и получаем новую матрицу. Наша задача — найти неизвестную матрицу Х.

Что такое матричное уравнение

Как решать матричное уравнение

Как решать матричное уравнение

Чтобы решить матричное уравнение, нам понадобится пройти 5 несложных шагов. Несложных — если их делать поэтапно, а не пытаться решить уравнение сразу за один подход. Вот пошаговый план решения матричного уравнения:

  1. Упрощаем уравнение.
  2. Вводим единичную матрицу.
  3. Находим обратную матрицу.
  4. Вычисляем неизвестную матрицу.
  5. Проверяем уравнение.

Понимаем, что звучит сложно, поэтому теперь — про каждый шаг в подробностях.

Шаг 1. Упрощаем уравнение 

Вместо известных числовых матриц вводим в уравнение буквы: первую матрицу обозначаем буквой A, вторую — буквой B. Неизвестную матрицу X оставляем. Это упрощение поможет составить формулу и выразить X через известную матрицу.

Приводим матричное уравнение к упрощённому виду
Приводим матричное уравнение к упрощённому виду

Шаг 2. Вводим единичную матрицу 

В линейной алгебре есть два вспомогательных понятия: обратная матрица и единичная матрица. Единичная матрица состоит из нулей, а по диагонали у неё единицы. Обратная матрица — это такая, которая при умножении на исходную даёт единичную матрицу. 

Можно представить, что есть число 100 — это «сто в первой степени», 1001

И есть число 0,01 — это «сто в минус первой степени», 100-1

При перемножении этих двух чисел получится единица:
1001 × 100-1 = 100 × 0,01 = 1. 

Вот такое, только в мире матриц. 

Зная свойства единичных и обратных матриц, делаем алгебраическое колдунство. Умножаем обе известные матрицы на обратную матрицу А-1. Неизвестную матрицу Х оставляем без изменений и переписываем уравнение: 

А-1 × А × Х = А-1 × В  

Добавляем единичную матрицу и упрощаем запись: 

А-1 × А = E — единичная матрица 

E × Х = А-1 × В — единичная матрица, умноженная на исходную матрицу, даёт исходную матрицу. Единичную матрицу убираем

Х = А-1 × В — новая запись уравнения 

После введения единичной матрицы мы нашли способ выражения неизвестной матрицы X через известные матрицы A и B. 

💡 Смотрите, что произошло: раньше нам нужно было найти неизвестную матрицу. А теперь мы точно знаем, как её найти: нужно рассчитать обратную матрицу A-1 и умножить её на известную матрицу B. И то и другое — замороченные процедуры, но с точки зрения арифметики — просто. 

Шаг 3. Находим обратную матрицу

Вспоминаем формулу и порядок расчёта обратной матрицы: 

  1. Делим единицу на определитель матрицы A. 
  2. Считаем транспонированную матрицу алгебраических дополнений. 
  3. Перемножаем значения и получаем нужную матрицу.

Формула вычисления обратной матрицы
Формула вычисления обратной матрицы
Решение матричных уравнений
Первое действие. Мы посчитали определитель и убедились, что он не равен нулю, — это значит, что у матричного уравнения есть вариант решения и можно продолжать
Решение матричных уравнений
Второе действие, часть 1: получаем матрицу миноров
Решение матричных уравнений
Второе действие, часть 2: переводим матрицу миноров в транспонированную матрицу алгебраических дополнений

Собираем формулу и получаем обратную матрицу. Для удобства умышленно оставляем перед матрицей дробное число, чтобы было проще считать.

Решение матричных уравнений
Третье действие: получаем обратную матрицу

Шаг 4. Вычисляем неизвестную матрицу

Нам остаётся посчитать матрицу X: умножаем обратную матрицу А-1 на матрицу B. Дробь держим за скобками и вносим в матрицу только при условии, что элементы новой матрицы будут кратны десяти — их можно умножить на дробь и получить целое число. Если кратных элементов не будет — дробь оставим за скобками.

Решение матричных уравнений
Решаем матричное уравнение и находим неизвестную матрицу X. Мы получили кратные числа и внесли дробь в матрицу

Шаг 5. Проверяем уравнение

Мы решили матричное уравнение и получили красивый ответ с целыми числами. Выглядит правильно, но в случае с матрицами этого недостаточно. Чтобы проверить ответ, нам нужно вернуться к условию и умножить исходную матрицу A на матрицу X. В результате должна появиться матрица B. Если расчёты совпадут — мы всё сделали правильно. Если будут отличия — придётся решать заново. 

👉 Часто начинающие математики пренебрегают финальной проверкой и считают её лишней тратой времени. Сегодня мы разобрали простое уравнение с двумя квадратными матрицами с четырьмя элементами в каждой. Когда элементов будет больше, в них легко запутаться и допустить ошибку.

Решение матричных уравнений
Проверяем ответ и получаем матрицу B — наши расчёты верны

Ну и что

Алгоритм решения матричных уравнений несложный, если знать отдельные его компоненты. Дальше на основе этих компонентов математики переходят в более сложные пространства: работают с многомерными матрицами, решают более сложные уравнения, постепенно выходят на всё более и более абстрактные уровни. И дальше, в конце пути, появляется датасет из миллионов котиков. Этот датасет раскладывается на пиксели, каждый пиксель оцифровывается, цифры подставляются в матрицы, и уже огромный алгоритм в автоматическом режиме генерирует изображение нейрокотика:

Решение матричных уравнений

Этого котика не существует, а матрицы — существуют. 

Текст:

Александр Бабаскин

Редактура:

Максим Ильяхов

Художник:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Мария Дронова

Соцсети:

Олег Вешкурцев

Получите ИТ-профессию
В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.
Получите ИТ-профессию Получите ИТ-профессию Получите ИТ-профессию Получите ИТ-профессию
Вам может быть интересно
TypeScript — как JavaScript, но может больше
TypeScript — как JavaScript, но может больше

Способ избежать проблем JavaScript в больших проектах.

easy
Haskell — ленивый язык программирования
Haskell — ленивый язык программирования

Он сам решает, что и когда нужно посчитать.

easy
Все знают о мужчинах в IT. А вот и женщины
Все знают о мужчинах в IT. А вот и женщины

Феминисткам всё равно не понравится эта статья, а вы прочитайте

easy
Notion: разбираемся как айтишники, как он устроен внутри и чем его можно заменить
Notion: разбираемся как айтишники, как он устроен внутри и чем его можно заменить

Сервис, который заблокировал пользователей из России

easy
Как разработчикам работать с дизайнерами
Как разработчикам работать с дизайнерами
easy
Bluetooth: как работает и зачем нужен
Bluetooth: как работает и зачем нужен

Чтобы подключать наушники и другие устройства

medium
Синтаксис языка Mojo
Синтаксис языка Mojo

10 основных конструкций клона Python для ML

easy
Как устроена радиосвязь
Как устроена радиосвязь

Wi-Fi, 4G, 5G и другие приключения электромагнитного поля

medium
Что внутри любого QR-кода
Что внутри любого QR-кода

Внимательно смотрим на чёрно-белые квадраты

medium
medium